Nuprl Lemma : exception-name_wf

[n:Atom2]. ∀[t:Value() ⋃ Exception(n;Top)].  (exception-name(t;n) ∈ 𝔹)


Proof




Definitions occuring in Statement :  exception-name: exception-name(e;n) Value: Value() Exception: Exception(n;T) atom: Atom$n b-union: A ⋃ B bool: 𝔹 uall: [x:A]. B[x] top: Top member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q Exception: Exception(n;T) prop: exception-name: exception-name(e;n) Value: Value() pi2: snd(t) ifthenelse: if then else fi  unit: Unit bool: 𝔹 tunion: x:A.B[x] b-union: A ⋃ B has-value: (a)↓ implies:  Q all: x:A. B[x] or: P ∨ Q exception-with-name: exception-with-name(n;t) subtype_rel: A ⊆B mono: mono(T) cand: c∧ B exists: x:A. B[x] is-above: is-above(T;a;z)
Lemmas referenced :  top_wf Exception_wf Value_wf b-union_wf assert_wf band_wf has-value-implies-dec-isaxiom-2 bfalse_wf btrue_wf has-value-implies-dec-isint-2 bool-mono atom2_subtype_base sqle_wf_base is-exception_wf has-value_wf_base
Rules used in proof :  atomnEquality because_Cache Error :isect_memberEquality_alt,  hypothesisEquality thin isectElimination extract_by_obid Error :universeIsType,  equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution rename setElimination equalityElimination unionElimination productElimination imageElimination tryReduceValue atomn_eqReduceTrueSq independent_functionElimination dependent_functionElimination baseClosed isintReduceTrue applyEquality closedConclusion baseApply Error :inhabitedIsType,  Error :equalityIsType4,  Error :productIsType,  sqleReflexivity sqleRule divergentSqle independent_pairFormation Error :dependent_pairFormation_alt,  natural_numberEquality

Latex:
\mforall{}[n:Atom2].  \mforall{}[t:Value()  \mcup{}  Exception(n;Top)].    (exception-name(t;n)  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-PM-00_28_33
Last ObjectModification: 2018_10_15-PM-10_46_04

Theory : subtype_1


Home Index