Nuprl Lemma : is-above-axiom
∀[z:Base]. z ~ Ax supposing is-above(Unit;Ax;z)
Proof
Definitions occuring in Statement : 
is-above: is-above(T;a;z)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
base: Base
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
is-above-axiom-general, 
unit_wf2, 
unit_subtype_base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination
Latex:
\mforall{}[z:Base].  z  \msim{}  Ax  supposing  is-above(Unit;Ax;z)
Date html generated:
2019_06_20-PM-00_28_17
Last ObjectModification:
2019_01_20-PM-02_28_23
Theory : subtype_1
Home
Index