Nuprl Lemma : is-above-axiom

[z:Base]. Ax supposing is-above(Unit;Ax;z)


Proof




Definitions occuring in Statement :  is-above: is-above(T;a;z) uimplies: supposing a uall: [x:A]. B[x] unit: Unit base: Base sqequal: t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  is-above-axiom-general unit_wf2 unit_subtype_base
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis independent_isectElimination

Latex:
\mforall{}[z:Base].  z  \msim{}  Ax  supposing  is-above(Unit;Ax;z)



Date html generated: 2019_06_20-PM-00_28_17
Last ObjectModification: 2019_01_20-PM-02_28_23

Theory : subtype_1


Home Index