Nuprl Lemma : is-above-inr
∀[A,B:Type]. ∀[a:B].  ∀z:Base. (is-above(A + B;inr a z) ⇒ (∃c:Base. ((z ~ inr c ) ∧ is-above(B;a;c))))
Proof
Definitions occuring in Statement : 
is-above: is-above(T;a;z), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
inr: inr x , 
union: left + right, 
base: Base, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
is-above: is-above(T;a;z), 
and: P ∧ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isr: isr(x), 
btrue: tt, 
true: True, 
prop: ℙ, 
outr: outr(x), 
bfalse: ff, 
false: False, 
cand: A c∧ B, 
uimplies: b supposing a, 
has-value: (a)↓, 
or: P ∨ Q, 
not: ¬A
Lemmas referenced : 
assert_wf, 
isr_wf, 
false_wf, 
true_wf, 
equal_wf, 
is-above_wf, 
base_wf, 
has-value-monotonic, 
has-value_wf_base, 
is-exception_wf, 
has-value-implies-dec-isinr-2, 
equal-wf-base-T, 
sqle_wf_base, 
not-btrue-sqle-bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
equalityTransitivity, 
unionEquality, 
unionElimination, 
voidElimination, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalIntensionalEquality, 
productEquality, 
inrEquality, 
universeEquality, 
independent_pairFormation, 
independent_isectElimination, 
divergentSqle, 
sqleReflexivity, 
because_Cache, 
promote_hyp, 
sqleRule
Latex:
\mforall{}[A,B:Type].  \mforall{}[a:B].
    \mforall{}z:Base.  (is-above(A  +  B;inr  a  ;z)  {}\mRightarrow{}  (\mexists{}c:Base.  ((z  \msim{}  inr  c  )  \mwedge{}  is-above(B;a;c))))
Date html generated:
2017_04_14-AM-07_37_13
Last ObjectModification:
2017_02_27-PM-03_09_19
Theory : subtype_1
Home
Index