Nuprl Lemma : strong-subtype-iff-respects-equality
∀[A,B:Type].  uiff(strong-subtype(A;B);(A ⊆r B) ∧ respects-equality(B;A))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
strong-subtype_wf, 
subtype_rel_wf, 
respects-equality_wf, 
istype-universe, 
istype-base, 
subtype-respects-equality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
Error :productIsType, 
instantiate, 
universeEquality, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
sqequalBase, 
equalitySymmetry, 
because_Cache, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
independent_isectElimination, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
setElimination, 
rename, 
Error :setIsType, 
pointwiseFunctionalityForEquality
Latex:
\mforall{}[A,B:Type].    uiff(strong-subtype(A;B);(A  \msubseteq{}r  B)  \mwedge{}  respects-equality(B;A))
Date html generated:
2019_06_20-PM-00_27_50
Last ObjectModification:
2018_11_23-PM-00_21_55
Theory : subtype_1
Home
Index