Nuprl Lemma : strong-subtype-iff-respects-equality

[A,B:Type].  uiff(strong-subtype(A;B);(A ⊆B) ∧ respects-equality(B;A))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uiff: uiff(P;Q) subtype_rel: A ⊆B respects-equality: respects-equality(S;T) uall: [x:A]. B[x] and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B respects-equality: respects-equality(S;T) all: x:A. B[x] implies:  Q prop: exists: x:A. B[x]
Lemmas referenced :  strong-subtype_wf subtype_rel_wf respects-equality_wf istype-universe istype-base subtype-respects-equality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  independent_pairFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule independent_pairEquality axiomEquality hypothesis Error :lambdaEquality_alt,  dependent_functionElimination hypothesisEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :universeIsType,  extract_by_obid isectElimination Error :productIsType,  instantiate universeEquality Error :lambdaFormation_alt,  Error :equalityIstype,  sqequalBase equalitySymmetry because_Cache applyEquality Error :dependent_set_memberEquality_alt,  equalityTransitivity independent_isectElimination independent_functionElimination Error :dependent_pairFormation_alt,  setElimination rename Error :setIsType,  pointwiseFunctionalityForEquality

Latex:
\mforall{}[A,B:Type].    uiff(strong-subtype(A;B);(A  \msubseteq{}r  B)  \mwedge{}  respects-equality(B;A))



Date html generated: 2019_06_20-PM-00_27_50
Last ObjectModification: 2018_11_23-PM-00_21_55

Theory : subtype_1


Home Index