Nuprl Lemma : strong-subtype-implies

[A,B:Type].  (strong-subtype(A;B)  {∀b:B. ∀a:A.  ((b a ∈ B)  (b a ∈ A))})


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q guard: {T} all: x:A. B[x] exists: x:A. B[x] prop: subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf exists_wf strong-subtype_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation dependent_pairFormation because_Cache hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality applyEquality productElimination sqequalRule dependent_set_memberEquality lambdaEquality dependent_functionElimination axiomEquality universeEquality isect_memberEquality

Latex:
\mforall{}[A,B:Type].    (strong-subtype(A;B)  {}\mRightarrow{}  \{\mforall{}b:B.  \mforall{}a:A.    ((b  =  a)  {}\mRightarrow{}  (b  =  a))\})



Date html generated: 2017_04_14-AM-07_36_46
Last ObjectModification: 2017_02_27-PM-03_09_05

Theory : subtype_1


Home Index