Nuprl Lemma : strong-subtype-isect-base

[A:Type]. (strong-subtype(A ⋂ Base;Base) ∧ strong-subtype(Base ⋂ A;Base))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) isect2: T1 ⋂ T2 uall: [x:A]. B[x] and: P ∧ Q base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B strong-subtype: strong-subtype(A;B) subtype_rel: A ⊆B isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  exists: x:A. B[x] uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  isect2_subtype_rel2 base_wf subtype_base_sq subtype_rel_self isect2_subtype_rel bool_wf exists_wf isect2_wf equal_wf strong-subtype_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation lambdaEquality isect_memberEquality unionElimination equalityElimination sqequalRule setElimination rename productElimination instantiate cumulativity independent_isectElimination because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality setEquality independent_pairEquality universeEquality

Latex:
\mforall{}[A:Type].  (strong-subtype(A  \mcap{}  Base;Base)  \mwedge{}  strong-subtype(Base  \mcap{}  A;Base))



Date html generated: 2016_05_13-PM-04_11_52
Last ObjectModification: 2015_12_26-AM-11_21_25

Theory : subtype_1


Home Index