Nuprl Lemma : strong-subtype-isect-base
∀[A:Type]. (strong-subtype(A ⋂ Base;Base) ∧ strong-subtype(Base ⋂ A;Base))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B), 
isect2: T1 ⋂ T2, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
base: Base, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
strong-subtype: strong-subtype(A;B), 
subtype_rel: A ⊆r B, 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
bfalse: ff, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ
Lemmas referenced : 
isect2_subtype_rel2, 
base_wf, 
subtype_base_sq, 
subtype_rel_self, 
isect2_subtype_rel, 
bool_wf, 
exists_wf, 
isect2_wf, 
equal_wf, 
strong-subtype_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
lambdaEquality, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
sqequalRule, 
setElimination, 
rename, 
productElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
setEquality, 
independent_pairEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  (strong-subtype(A  \mcap{}  Base;Base)  \mwedge{}  strong-subtype(Base  \mcap{}  A;Base))
Date html generated:
2016_05_13-PM-04_11_52
Last ObjectModification:
2015_12_26-AM-11_21_25
Theory : subtype_1
Home
Index