Nuprl Lemma : strong-subtype-set1
∀[A:Type]. ∀[P,Q:A ⟶ ℙ].  strong-subtype({x:A| P[x]} {x:A| Q[x]} ) supposing ∀x:A. (P[x] 
⇒ Q[x])
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
strong-subtype-set, 
strong-subtype-self, 
strong-subtype_witness, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setEquality, 
universeEquality, 
independent_functionElimination, 
functionEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[P,Q:A  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;\{x:A|  Q[x]\}  )  supposing  \mforall{}x:A.  (P[x]  {}\mRightarrow{}  Q[x])
Date html generated:
2016_05_13-PM-04_11_13
Last ObjectModification:
2015_12_26-AM-11_21_27
Theory : subtype_1
Home
Index