Nuprl Lemma : t-sqle-apply-dependent
∀[A:Type]
  ∀[B:A ⟶ Type]
    ∀a1,a2:A. ∀f1,f2:a:A ⟶ B[a].  (t-sqle(a:A ⟶ B[a];f1;f2) 
⇒ t-sqle(A;a1;a2) 
⇒ t-sqle(B[a1];f1 a1;f2 a2)) 
  supposing mono(A)
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
t-sqle: t-sqle(T;a;b)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
t-sqle: t-sqle(T;a;b)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
per-class: per-class(T;a)
, 
prop: ℙ
, 
so_apply: x[s]
, 
mono: mono(T)
, 
is-above: is-above(T;a;z)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
t-sqle_wf, 
istype-universe, 
mono_wf, 
sqle_wf_base, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
functionEquality, 
applyEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
independent_pairFormation, 
Error :productIsType, 
Error :equalityIsType2, 
Error :dependent_set_memberEquality_alt, 
baseApply, 
closedConclusion, 
independent_isectElimination, 
Error :equalityIsType3, 
Error :equalityIsType1, 
applyLambdaEquality, 
sqleRule, 
Error :setIsType
Latex:
\mforall{}[A:Type]
    \mforall{}[B:A  {}\mrightarrow{}  Type]
        \mforall{}a1,a2:A.  \mforall{}f1,f2:a:A  {}\mrightarrow{}  B[a].
            (t-sqle(a:A  {}\mrightarrow{}  B[a];f1;f2)  {}\mRightarrow{}  t-sqle(A;a1;a2)  {}\mRightarrow{}  t-sqle(B[a1];f1  a1;f2  a2)) 
    supposing  mono(A)
Date html generated:
2019_06_20-PM-00_28_25
Last ObjectModification:
2018_10_05-PM-04_01_28
Theory : subtype_1
Home
Index