Nuprl Lemma : t-sqle-apply-dependent

[A:Type]
  ∀[B:A ⟶ Type]
    ∀a1,a2:A. ∀f1,f2:a:A ⟶ B[a].  (t-sqle(a:A ⟶ B[a];f1;f2)  t-sqle(A;a1;a2)  t-sqle(B[a1];f1 a1;f2 a2)) 
  supposing mono(A)


Proof




Definitions occuring in Statement :  mono: mono(T) t-sqle: t-sqle(T;a;b) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q t-sqle: t-sqle(T;a;b) squash: T exists: x:A. B[x] per-class: per-class(T;a) prop: so_apply: x[s] mono: mono(T) is-above: is-above(T;a;z) and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B
Lemmas referenced :  t-sqle_wf istype-universe mono_wf sqle_wf_base subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  sqequalHypSubstitution imageElimination productElimination thin setElimination rename sqequalRule imageMemberEquality hypothesisEquality baseClosed hypothesis Error :universeIsType,  extract_by_obid isectElimination functionEquality applyEquality Error :inhabitedIsType,  Error :functionIsType,  Error :lambdaEquality_alt,  dependent_functionElimination Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  because_Cache equalityTransitivity equalitySymmetry universeEquality independent_functionElimination Error :dependent_pairFormation_alt,  independent_pairFormation Error :productIsType,  Error :equalityIsType2,  Error :dependent_set_memberEquality_alt,  baseApply closedConclusion independent_isectElimination Error :equalityIsType3,  Error :equalityIsType1,  applyLambdaEquality sqleRule Error :setIsType

Latex:
\mforall{}[A:Type]
    \mforall{}[B:A  {}\mrightarrow{}  Type]
        \mforall{}a1,a2:A.  \mforall{}f1,f2:a:A  {}\mrightarrow{}  B[a].
            (t-sqle(a:A  {}\mrightarrow{}  B[a];f1;f2)  {}\mRightarrow{}  t-sqle(A;a1;a2)  {}\mRightarrow{}  t-sqle(B[a1];f1  a1;f2  a2)) 
    supposing  mono(A)



Date html generated: 2019_06_20-PM-00_28_25
Last ObjectModification: 2018_10_05-PM-04_01_28

Theory : subtype_1


Home Index