Nuprl Lemma : unit-mono
mono(Unit)
Proof
Definitions occuring in Statement : 
mono: mono(T)
, 
unit: Unit
Definitions unfolded in proof : 
mono: mono(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
unit: Unit
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
equal-unit, 
is-above-axiom, 
is-above_wf, 
unit_wf2, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityElimination, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
mono(Unit)
Date html generated:
2016_05_13-PM-04_13_30
Last ObjectModification:
2015_12_26-AM-11_11_05
Theory : subtype_1
Home
Index