Step * 2 1 3 1 2 1 of Lemma alpha-rename-equivalent


1. opr Type
2. ∀t:term(opr). ∀bnds:varname() List. ∀f:{v:varname()| (v ∈ bnds all-vars(t))}  ⟶ varname().
     (map(f;bnds) ∈ varname() List)
3. bts bound-term(opr) List
4. ∀bt:bound-term(opr)
     ((bt ∈ bts)
      (∀bnds:varname() List. ∀f:{v:varname()| (v ∈ bnds all-vars(snd(bt)))}  ⟶ varname().
           alpha-aux(opr;map(f;bnds);bnds;alpha-rename-aux(f;bnds;snd(bt));snd(bt)) 
           supposing ((∀x:{v:varname()| (v ∈ bnds all-vars(snd(bt)))} 
                         ((f x ∈ free-vars-aux(bnds;snd(bt)))  ((f x) x ∈ varname())))
           ∧ (∀x:{v:varname()| (v ∈ bnds all-vars(snd(bt)))} 
                (((f x) nullvar() ∈ varname())  (x nullvar() ∈ varname()))))
           ∧ Inj({v:varname()| (v ∈ bnds all-vars(snd(bt)))} ;varname();f)))
5. opr
6. bnds varname() List
7. f@0 {v:varname()| (v ∈ bnds all-vars(mkterm(f;bts)))}  ⟶ varname()
8. ∀x:{v:varname()| (v ∈ bnds all-vars(mkterm(f;bts)))} 
     ((f@0 x ∈ free-vars-aux(bnds;mkterm(f;bts)))  ((f@0 x) x ∈ varname()))
9. ∀x:{v:varname()| (v ∈ bnds all-vars(mkterm(f;bts)))} 
     (((f@0 x) nullvar() ∈ varname())  (x nullvar() ∈ varname()))
10. Inj({v:varname()| (v ∈ bnds all-vars(mkterm(f;bts)))} ;varname();f@0)
11. bnds ∈ {v:varname()| (v ∈ bnds)}  List
12. λbt.let vs,a bt 
        in <map(f@0;vs), alpha-rename-aux(f@0;rev(vs) bnds;a)> ∈ {bt:bound-term(opr)| (bt ∈ bts)}  ⟶ bound-term(opr)
13. bts ∈ {bt:bound-term(opr)| (bt ∈ bts)}  List
14. bound-term(opr) List
15. map(λbt.let vs,a bt in <map(f@0;vs), alpha-rename-aux(f@0;rev(vs) bnds;a)>;bts) L ∈ (bound-term(opr) List)
16. f ∈ opr
⊢ ||L|| ||bts|| ∈ ℤ
BY
(RWO "-2<THEN Auto) }


Latex:


Latex:

1.  opr  :  Type
2.  \mforall{}t:term(opr).  \mforall{}bnds:varname()  List.  \mforall{}f:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(t))\}    {}\mrightarrow{}  varname().
          (map(f;bnds)  \mmember{}  varname()  List)
3.  bts  :  bound-term(opr)  List
4.  \mforall{}bt:bound-term(opr)
          ((bt  \mmember{}  bts)
          {}\mRightarrow{}  (\mforall{}bnds:varname()  List.  \mforall{}f:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(snd(bt)))\}    {}\mrightarrow{}  varname().
                      alpha-aux(opr;map(f;bnds);bnds;alpha-rename-aux(f;bnds;snd(bt));snd(bt)) 
                      supposing  ((\mforall{}x:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(snd(bt)))\} 
                                                  ((f  x  \mmember{}  free-vars-aux(bnds;snd(bt)))  {}\mRightarrow{}  ((f  x)  =  x)))
                      \mwedge{}  (\mforall{}x:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(snd(bt)))\} 
                                (((f  x)  =  nullvar())  {}\mRightarrow{}  (x  =  nullvar()))))
                      \mwedge{}  Inj(\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(snd(bt)))\}  ;varname();f)))
5.  f  :  opr
6.  bnds  :  varname()  List
7.  f@0  :  \{v:varname()|  (v  \mmember{}  bnds  @  all-vars(mkterm(f;bts)))\}    {}\mrightarrow{}  varname()
8.  \mforall{}x:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(mkterm(f;bts)))\} 
          ((f@0  x  \mmember{}  free-vars-aux(bnds;mkterm(f;bts)))  {}\mRightarrow{}  ((f@0  x)  =  x))
9.  \mforall{}x:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(mkterm(f;bts)))\} 
          (((f@0  x)  =  nullvar())  {}\mRightarrow{}  (x  =  nullvar()))
10.  Inj(\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(mkterm(f;bts)))\}  ;varname();f@0)
11.  bnds  \mmember{}  \{v:varname()|  (v  \mmember{}  bnds)\}    List
12.  \mlambda{}bt.let  vs,a  =  bt 
                in  <map(f@0;vs),  alpha-rename-aux(f@0;rev(vs)  +  bnds;a)>  \mmember{}  \{bt:bound-term(opr)|  (bt  \mmember{}  bts)\}  \000C  {}\mrightarrow{}  bound-term(opr)
13.  bts  \mmember{}  \{bt:bound-term(opr)|  (bt  \mmember{}  bts)\}    List
14.  L  :  bound-term(opr)  List
15.  map(\mlambda{}bt.let  vs,a  =  bt  in  <map(f@0;vs),  alpha-rename-aux(f@0;rev(vs)  +  bnds;a)>bts)  =  L
16.  f  =  f
\mvdash{}  ||L||  =  ||bts||


By


Latex:
(RWO  "-2<"  0  THEN  Auto)




Home Index