Nuprl Lemma : alpha-rename_wf
∀[opr:Type]. ∀[t:term(opr)].
  ∀f:{v:varname()| (v ∈ all-vars(t))}  ⟶ varname()
    alpha-rename(f;t) ∈ term(opr) 
    supposing ∀x:{v:varname()| (v ∈ all-vars(t))} . (((f x) = nullvar() ∈ varname()) ⇒ (x = nullvar() ∈ varname()))
Proof
Definitions occuring in Statement : 
alpha-rename: alpha-rename(f;t), 
all-vars: all-vars(t), 
term: term(opr), 
nullvar: nullvar(), 
varname: varname(), 
l_member: (x ∈ l), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
alpha-rename: alpha-rename(f;t), 
append: as @ bs, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3], 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
alpha-rename-aux_wf, 
nil_wf, 
varname_wf, 
list_ind_nil_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
nullvar_wf, 
l_member_wf, 
append_wf, 
all-vars_wf, 
term_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
Error :memTop, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
because_Cache, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productElimination, 
equalityIstype, 
setIsType, 
axiomEquality, 
functionIsType, 
setElimination, 
rename, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
universeEquality
Latex:
\mforall{}[opr:Type].  \mforall{}[t:term(opr)].
    \mforall{}f:\{v:varname()|  (v  \mmember{}  all-vars(t))\}    {}\mrightarrow{}  varname()
        alpha-rename(f;t)  \mmember{}  term(opr) 
        supposing  \mforall{}x:\{v:varname()|  (v  \mmember{}  all-vars(t))\}  .  (((f  x)  =  nullvar())  {}\mRightarrow{}  (x  =  nullvar()))
Date html generated:
2020_05_19-PM-09_56_42
Last ObjectModification:
2020_03_09-PM-04_09_28
Theory : terms
Home
Index