Nuprl Lemma : alpha-rename-aux_wf
∀[opr:Type]. ∀[t:term(opr)]. ∀[bnds:varname() List].
  ∀f:{v:varname()| (v ∈ bnds @ all-vars(t))}  ⟶ varname()
    alpha-rename-aux(f;bnds;t) ∈ term(opr) 
    supposing ∀x:{v:varname()| (v ∈ bnds @ all-vars(t))} 
                (((f x) = nullvar() ∈ varname()) ⇒ (x = nullvar() ∈ varname()))
Proof
Definitions occuring in Statement : 
alpha-rename-aux: alpha-rename-aux(f;bnds;t), 
all-vars: all-vars(t), 
term: term(opr), 
nullvar: nullvar(), 
varname: varname(), 
l_member: (x ∈ l), 
append: as @ bs, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
coterm-fun: coterm-fun(opr;T), 
all-vars: all-vars(t), 
alpha-rename-aux: alpha-rename-aux(f;bnds;t), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
has-value: (a)↓, 
bound-term: bound-term(opr), 
istype: istype(T), 
mkterm: mkterm(opr;bts), 
cand: A c∧ B, 
pi1: fst(t), 
pi2: snd(t), 
reverse: rev(as), 
squash: ↓T, 
true: True, 
sq_stable: SqStable(P)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
term-ext, 
subtype_rel_weakening, 
term_wf, 
coterm-fun_wf, 
ext-eq_inversion, 
nullvar_wf, 
l_member_wf, 
varname_wf, 
append_wf, 
all-vars_wf, 
list_wf, 
term-size_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
istype-universe, 
deq-member_wf, 
var-deq_wf, 
eqtt_to_assert, 
assert-deq-member, 
varterm_wf, 
member_append, 
cons_wf, 
nil_wf, 
value-type-has-value, 
bound-term_wf, 
list-value-type, 
mkterm_wf, 
list-subtype, 
eager-map_wf, 
product-value-type, 
map_wf, 
subtype_rel_dep_function, 
member-all-vars-mkterm, 
term-size-positive, 
term_size_mkterm_lemma, 
rev-append_wf, 
rev-append-property, 
reverse_wf, 
member-reverse, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
summand-le-lsum, 
pi2_wf, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaFormation_alt, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
productElimination, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
promote_hyp, 
hypothesis_subsumption, 
functionIsType, 
equalityIstype, 
setIsType, 
addEquality, 
universeEquality, 
equalityElimination, 
inlFormation_alt, 
baseClosed, 
sqequalBase, 
callbyvalueReduce, 
productEquality, 
independent_pairEquality, 
setEquality, 
inrFormation_alt, 
unionIsType, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[opr:Type].  \mforall{}[t:term(opr)].  \mforall{}[bnds:varname()  List].
    \mforall{}f:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(t))\}    {}\mrightarrow{}  varname()
        alpha-rename-aux(f;bnds;t)  \mmember{}  term(opr) 
        supposing  \mforall{}x:\{v:varname()|  (v  \mmember{}  bnds  @  all-vars(t))\}  .  (((f  x)  =  nullvar())  {}\mRightarrow{}  (x  =  nullvar()))
Date html generated:
2020_05_19-PM-09_56_39
Last ObjectModification:
2020_03_09-PM-04_09_26
Theory : terms
Home
Index