Nuprl Lemma : var-deq_wf
VarDeq ∈ EqDecider(varname())
Proof
Definitions occuring in Statement : 
var-deq: VarDeq, 
varname: varname(), 
deq: EqDecider(T), 
member: t ∈ T
Definitions unfolded in proof : 
deq: EqDecider(T), 
var-deq: VarDeq, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
eq_var_wf, 
varname_wf, 
iff_weakening_uiff, 
assert_wf, 
equal_wf, 
assert-eq_var, 
istype-assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
lambdaFormation_alt, 
independent_pairFormation, 
equalityIstype, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
promote_hyp, 
functionIsType, 
productIsType, 
applyEquality
Latex:
VarDeq  \mmember{}  EqDecider(varname())
Date html generated:
2020_05_19-PM-09_53_02
Last ObjectModification:
2020_03_09-PM-04_07_58
Theory : terms
Home
Index