Nuprl Lemma : subterm_transitivity
∀[opr:Type]. ∀s,t,r:term(opr).  (s << t ⇒ t << r ⇒ s << r)
Proof
Definitions occuring in Statement : 
subterm: s << t, 
term: term(opr), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
subterm: s << t, 
subterm-rel: subterm-rel(opr), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
infix_ap: x f y, 
prop: ℙ, 
guard: {T}, 
utrans: UniformlyTrans(T;x,y.E[x; y])
Lemmas referenced : 
transitive-closure-transitive, 
immediate-subterm_wf, 
transitive-closure_wf, 
term_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
applyEquality, 
instantiate, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[opr:Type].  \mforall{}s,t,r:term(opr).    (s  <<  t  {}\mRightarrow{}  t  <<  r  {}\mRightarrow{}  s  <<  r)
Date html generated:
2020_05_19-PM-09_54_10
Last ObjectModification:
2020_03_10-PM-01_23_24
Theory : terms
Home
Index