Nuprl Lemma : shorten-tuple_wf
∀[L:Type List]. ∀[n:ℕ||L||]. ∀[x:tuple-type(L)].  (shorten-tuple(x;n) ∈ tuple-type(nth_tl(n;L)))
Proof
Definitions occuring in Statement : 
shorten-tuple: shorten-tuple(x;n), 
tuple-type: tuple-type(L), 
length: ||as||, 
nth_tl: nth_tl(n;as), 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
top: Top, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
shorten-tuple-split-tuple, 
int_seg_subtype_nat, 
length_wf, 
false_wf, 
pi2_wf, 
tuple-type_wf, 
firstn_wf, 
nth_tl_wf, 
split-tuple_wf, 
int_seg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
instantiate, 
universeEquality, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}[L:Type  List].  \mforall{}[n:\mBbbN{}||L||].  \mforall{}[x:tuple-type(L)].    (shorten-tuple(x;n)  \mmember{}  tuple-type(nth\_tl(n;L)))
Date html generated:
2016_05_14-PM-03_58_37
Last ObjectModification:
2015_12_26-PM-07_21_43
Theory : tuples
Home
Index