Nuprl Lemma : bag-member-append
∀[T:Type]. ∀x:T. ∀as,bs:bag(T).  (x ↓∈ as + bs 
⇐⇒ x ↓∈ as ↓∨ x ↓∈ bs)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-append: as + bs
, 
bag: bag(T)
, 
sq_or: a ↓∨ b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
sq_or: a ↓∨ b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
bag-append: as + bs
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
or: P ∨ Q
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
bag_to_squash_list, 
bag-member_wf, 
bag-append_wf, 
list-subtype-bag, 
squash_wf, 
or_wf, 
sq_stable__bag-member, 
bag_wf, 
istype-universe, 
member-permutation, 
member_append, 
l_member_wf, 
append_wf, 
permutation_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
rename, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairEquality, 
functionIsTypeImplies, 
universeEquality, 
pertypeElimination, 
equalityTransitivity, 
unionElimination, 
inlFormation_alt, 
dependent_pairFormation_alt, 
productIsType, 
equalityIsType1, 
inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}as,bs:bag(T).    (x  \mdownarrow{}\mmember{}  as  +  bs  \mLeftarrow{}{}\mRightarrow{}  x  \mdownarrow{}\mmember{}  as  \mdownarrow{}\mvee{}  x  \mdownarrow{}\mmember{}  bs)
Date html generated:
2019_10_15-AM-11_01_13
Last ObjectModification:
2018_10_10-PM-01_06_41
Theory : bags
Home
Index