Nuprl Lemma : bag-remove1-member
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  (bag-remove1(eq;{x} + bs;x) = (inl bs) ∈ (bag(T)?))
Proof
Definitions occuring in Statement : 
bag-remove1: bag-remove1(eq;bs;a), 
bag-append: as + bs, 
single-bag: {x}, 
bag: bag(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
unit: Unit, 
inl: inl x, 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
label: ...$L... t, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_or: a ↓∨ b, 
squash: ↓T
Lemmas referenced : 
bag-remove1-property, 
bag-append_wf, 
single-bag_wf, 
bag_wf, 
unit_wf2, 
list_wf, 
permutation_wf, 
istype-universe, 
deq_wf, 
bag-append-cancel, 
list-subtype-bag, 
subtype_rel_self, 
bag-member-append, 
bag-member-single, 
bag-member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
pointwiseFunctionalityForEquality, 
unionEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
productIsType, 
equalityIsType4, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality_alt, 
axiomEquality, 
universeEquality, 
inlEquality_alt, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
inlFormation_alt, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    (bag-remove1(eq;\{x\}  +  bs;x)  =  (inl  bs))
Date html generated:
2019_10_16-AM-11_30_52
Last ObjectModification:
2018_10_11-AM-10_03_28
Theory : bags_2
Home
Index