Nuprl Lemma : member-sub-bags
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs,b:bag(T)].  uiff(b ↓∈ sub-bags(eq;bs);↓sub-bag(T;b;bs)) supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
sub-bags: sub-bags(eq;bs), 
bag-member: x ↓∈ bs, 
sub-bag: sub-bag(T;as;bs), 
bag: bag(T), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
squash: ↓T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
squash: ↓T, 
prop: ℙ, 
bag-member: x ↓∈ bs, 
sub-bags: sub-bags(eq;bs), 
all: ∀x:A. B[x], 
top: Top, 
exists: ∃x:A. B[x], 
pi1: fst(t), 
sub-bag: sub-bag(T;as;bs), 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B
Lemmas referenced : 
bag-member_wf, 
bag_wf, 
sub-bags_wf, 
squash_wf, 
sub-bag_wf, 
deq_wf, 
valueall-type_wf, 
bag-member-map, 
pi1_wf_top, 
bag-partitions_wf, 
bag-member-partitions, 
equal_wf, 
bag-append_wf, 
sq_stable__bag-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
extract_by_obid, 
isectElimination, 
cumulativity, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productEquality, 
dependent_functionElimination, 
lambdaEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
independent_functionElimination
Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[bs,b:bag(T)].    uiff(b  \mdownarrow{}\mmember{}  sub-bags(eq;bs);\mdownarrow{}sub-bag(T;b;bs)) 
    supposing  valueall-type(T)
Date html generated:
2018_05_21-PM-09_52_31
Last ObjectModification:
2017_07_26-PM-06_31_52
Theory : bags_2
Home
Index