Nuprl Lemma : bag-member-map

[T,U:Type].  ∀x:U. ∀f:T ⟶ U. ∀bs:bag(T).  uiff(x ↓∈ bag-map(f;bs);↓∃v:T. (v ↓∈ bs ∧ (x (f v) ∈ U)))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-map: bag-map(f;bs) bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: bag-member: x ↓∈ bs so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] implies:  Q subtype_rel: A ⊆B bag-map: bag-map(f;bs) top: Top empty-bag: {} false: False append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] single-bag: {x} bag-append: as bs iff: ⇐⇒ Q sq_or: a ↓∨ b or: P ∨ Q rev_implies:  Q cand: c∧ B cons-bag: x.b rev_uimplies: rev_uimplies(P;Q) guard: {T} sq_stable: SqStable(P)
Lemmas referenced :  bag-member_wf bag-map_wf squash_wf exists_wf equal_wf bag_wf bag_to_squash_list list_induction list-subtype-bag list_wf map_nil_lemma empty-bag_wf bag-member-empty-iff list_ind_cons_lemma list_ind_nil_lemma bag-map-append single-bag_wf top_wf bag-member-append map_cons_lemma cons_wf bag-member-single bag-member-cons sq_stable__bag-member map_wf member_map l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation sqequalHypSubstitution imageElimination hypothesis sqequalRule imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination cumulativity functionExtensionality applyEquality lambdaEquality productEquality functionEquality dependent_functionElimination productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry because_Cache universeEquality hyp_replacement applyLambdaEquality independent_functionElimination independent_isectElimination rename voidElimination voidEquality unionElimination dependent_pairFormation inlFormation inrFormation

Latex:
\mforall{}[T,U:Type].    \mforall{}x:U.  \mforall{}f:T  {}\mrightarrow{}  U.  \mforall{}bs:bag(T).    uiff(x  \mdownarrow{}\mmember{}  bag-map(f;bs);\mdownarrow{}\mexists{}v:T.  (v  \mdownarrow{}\mmember{}  bs  \mwedge{}  (x  =  (f  v))))



Date html generated: 2017_10_01-AM-08_54_08
Last ObjectModification: 2017_07_26-PM-04_35_53

Theory : bags


Home Index