Nuprl Lemma : bag-member-cons

[T:Type]. ∀[x,u:T]. ∀[v:bag(T)].  uiff(x ↓∈ u.v;(x u ∈ T) ↓∨ x ↓∈ v)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs cons-bag: x.b bag: bag(T) sq_or: a ↓∨ b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  sq_or: a ↓∨ b uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T squash: T prop: uall: [x:A]. B[x] bag-member: x ↓∈ bs exists: x:A. B[x] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q cons-bag: x.b append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] bag-append: as bs single-bag: {x} or: P ∨ Q sq_stable: SqStable(P) cand: c∧ B rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag-member_wf cons-bag_wf squash_wf or_wf equal_wf bag_wf bag_to_squash_list true_wf iff_weakening_equal list_ind_cons_lemma list_ind_nil_lemma bag-member-append cons_wf nil_wf list-subtype-bag bag-member-single sq_stable__bag-member cons_member l_member_wf and_wf exists_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep independent_pairFormation isect_memberFormation introduction cut sqequalHypSubstitution imageElimination hypothesis imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination cumulativity because_Cache universeEquality productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality hyp_replacement applyLambdaEquality applyEquality lambdaEquality independent_isectElimination independent_functionElimination dependent_functionElimination voidElimination voidEquality unionElimination inlFormation inrFormation dependent_pairFormation productEquality rename addLevel existsFunctionality dependent_set_memberEquality setElimination

Latex:
\mforall{}[T:Type].  \mforall{}[x,u:T].  \mforall{}[v:bag(T)].    uiff(x  \mdownarrow{}\mmember{}  u.v;(x  =  u)  \mdownarrow{}\mvee{}  x  \mdownarrow{}\mmember{}  v)



Date html generated: 2017_10_01-AM-08_54_02
Last ObjectModification: 2017_07_26-PM-04_35_50

Theory : bags


Home Index