Nuprl Lemma : compact-nat-inf
∀p:ℕ∞ ⟶ 𝔹. ((∃x:ℕ∞. p x = ff) ∨ (∀x:ℕ∞. p x = tt))
Proof
Definitions occuring in Statement : 
nat-inf: ℕ∞, 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
guard: {T}, 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
true: True, 
rev_implies: P ⇐ Q
Lemmas referenced : 
nat-inf_wf, 
ni-selector_wf, 
bool_wf, 
equal-wf-T-base, 
all_wf, 
equal_wf, 
btrue_neq_bfalse, 
ni-selector-property, 
exists_wf, 
not_wf, 
iff_imp_equal_bool, 
false_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionElimination, 
equalityElimination, 
inlFormation, 
dependent_pairFormation, 
baseClosed, 
sqequalRule, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
voidElimination, 
addLevel, 
impliesFunctionality, 
productElimination, 
inrFormation, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
natural_numberEquality
Latex:
\mforall{}p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}.  ((\mexists{}x:\mBbbN{}\minfty{}.  p  x  =  ff)  \mvee{}  (\mforall{}x:\mBbbN{}\minfty{}.  p  x  =  tt))
Date html generated:
2017_10_01-AM-08_29_30
Last ObjectModification:
2017_07_26-PM-04_24_02
Theory : basic
Home
Index