Step
*
1
2
of Lemma
compact-product
1. [T] : Type
2. [S] : T ⟶ Type
3. ∀p:T ⟶ 𝔹. ((∃x:T. p x = ff) ∨ (∀x:T. p x = tt))
4. d : ∀t:T. ∀p:S[t] ⟶ 𝔹. ((∃x:S[t]. p x = ff) ∨ (∀x:S[t]. p x = tt))
5. p : (t:T × S[t]) ⟶ 𝔹
6. ∀x:T. isr(d x (λs.(p <x, s>))) = tt
⊢ (∃x:t:T × S[t]. p x = ff) ∨ (∀x:t:T × S[t]. p x = tt)
BY
{ (OrRight THEN Auto THEN D -1 THEN (InstHyp [⌜t⌝] (-3)⋅ THENA Auto) THEN MoveToConcl (-1)) }
1
1. T : Type
2. S : T ⟶ Type
3. ∀p:T ⟶ 𝔹. ((∃x:T. p x = ff) ∨ (∀x:T. p x = tt))
4. d : ∀t:T. ∀p:S[t] ⟶ 𝔹. ((∃x:S[t]. p x = ff) ∨ (∀x:S[t]. p x = tt))
5. p : (t:T × S[t]) ⟶ 𝔹
6. ∀x:T. isr(d x (λs.(p <x, s>))) = tt
7. t : T
8. x1 : S[t]
⊢ isr(d t (λs.(p <t, s>))) = tt
⇒ p <t, x1> = tt
Latex:
Latex:
1. [T] : Type
2. [S] : T {}\mrightarrow{} Type
3. \mforall{}p:T {}\mrightarrow{} \mBbbB{}. ((\mexists{}x:T. p x = ff) \mvee{} (\mforall{}x:T. p x = tt))
4. d : \mforall{}t:T. \mforall{}p:S[t] {}\mrightarrow{} \mBbbB{}. ((\mexists{}x:S[t]. p x = ff) \mvee{} (\mforall{}x:S[t]. p x = tt))
5. p : (t:T \mtimes{} S[t]) {}\mrightarrow{} \mBbbB{}
6. \mforall{}x:T. isr(d x (\mlambda{}s.(p <x, s>))) = tt
\mvdash{} (\mexists{}x:t:T \mtimes{} S[t]. p x = ff) \mvee{} (\mforall{}x:t:T \mtimes{} S[t]. p x = tt)
By
Latex:
(OrRight THEN Auto THEN D -1 THEN (InstHyp [\mkleeneopen{}t\mkleeneclose{}] (-3)\mcdot{} THENA Auto) THEN MoveToConcl (-1))
Home
Index