Nuprl Lemma : ite_and_reduce
∀[b1,b2:𝔹]. ∀[x,y:Top]. (if b1 then if b2 then x else y fi else y fi ~ if b1 ∧b b2 then x else y fi )
Proof
Definitions occuring in Statement :
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
band: p ∧b q
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
Lemmas referenced :
bool_wf,
eqtt_to_assert,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
hypothesisEquality,
thin,
extract_by_obid,
hypothesis,
lambdaFormation,
sqequalHypSubstitution,
unionElimination,
equalityElimination,
isectElimination,
because_Cache,
productElimination,
independent_isectElimination,
sqequalRule,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
voidElimination,
axiomSqEquality,
inhabitedIsType,
isect_memberEquality,
universeIsType
Latex:
\mforall{}[b1,b2:\mBbbB{}]. \mforall{}[x,y:Top].
(if b1 then if b2 then x else y fi else y fi \msim{} if b1 \mwedge{}\msubb{} b2 then x else y fi )
Date html generated:
2019_10_15-AM-10_46_40
Last ObjectModification:
2018_09_27-AM-09_41_11
Theory : basic
Home
Index