Nuprl Lemma : dl-aprog_wf
∀[x:ℕ]. (atm(x) ∈ Prog)
Proof
Definitions occuring in Statement : 
dl-aprog: atm(x), 
dl-prog: Prog, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
dl-prog: Prog, 
dl-aprog: atm(x), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
tuple-type: tuple-type(L), 
list_ind: list_ind, 
prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl), 
map: map(f;as), 
mrec-spec: mrec-spec(L;lbl;p), 
apply-alist: apply-alist(eq;L;x), 
dl-Spec: dl-Spec(), 
cons: [a / b], 
ifthenelse: if b then t else f fi , 
atom-deq: AtomDeq, 
eq_atom: x =a y, 
pi1: fst(t), 
btrue: tt, 
pi2: snd(t), 
null: null(as), 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
length: ||as||, 
true: True, 
and: P ∧ Q
Lemmas referenced : 
mk-prec_wf-mrec, 
dl-Spec_wf, 
subtype_rel_self, 
tuple-type_wf, 
prec-arg-types_wf, 
mrec-spec_wf, 
istype-atom, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
closedConclusion, 
tokenEquality, 
hypothesisEquality, 
applyEquality, 
atomEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
independent_isectElimination, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[x:\mBbbN{}].  (atm(x)  \mmember{}  Prog)
Date html generated:
2019_10_15-AM-11_39_18
Last ObjectModification:
2019_03_26-AM-11_24_04
Theory : dynamic!logic
Home
Index