Nuprl Lemma : is-list-if-has-value-rec-decomp
∀[t:Base]. (if ispair(t) then t ~ <fst(t), snd(t)> else t ~ Ax fi ) supposing ((t)↓ and is-list-if-has-value-rec(t))
Proof
Definitions occuring in Statement : 
is-list-if-has-value-rec: is-list-if-has-value-rec(t), 
has-value: (a)↓, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
ispair: if z is a pair then a otherwise b, 
pair: <a, b>, 
base: Base, 
sqequal: s ~ t, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
is-list-if-has-value-rec: is-list-if-has-value-rec(t), 
is-list-if-has-value-fun: is-list-if-has-value-fun(t;n), 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
top: Top, 
or: P ∨ Q, 
has-value: (a)↓, 
pi1: fst(t), 
pi2: snd(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
bool: 𝔹, 
assert: ↑b, 
exposed-it: exposed-it, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
guard: {T}, 
exists: ∃x:A. B[x], 
bnot: ¬bb
Lemmas referenced : 
false_wf, 
le_wf, 
primrec1_lemma, 
has-value-implies-dec-ispair-2, 
top_wf, 
ispair-bool-if-has-value, 
equal_wf, 
has-value_wf_base, 
is-list-if-has-value-rec_wf, 
bool_wf, 
base_wf, 
has-value-implies-dec-isaxiom-2, 
btrue_wf, 
eqtt_to_assert, 
subtype_base_sq, 
subtype_rel_self, 
isaxiom-implies, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
hypothesisEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_functionElimination, 
unionElimination, 
because_Cache, 
sqequalAxiom, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
equalityElimination, 
productElimination, 
cumulativity, 
dependent_pairFormation, 
promote_hyp
Latex:
\mforall{}[t:Base]
    (if  ispair(t)  then  t  \msim{}  <fst(t),  snd(t)>  else  t  \msim{}  Ax  fi  )  supposing 
          ((t)\mdownarrow{}  and 
          is-list-if-has-value-rec(t))
Date html generated:
2018_05_21-PM-10_19_30
Last ObjectModification:
2017_07_26-PM-06_37_02
Theory : eval!all
Home
Index