Nuprl Lemma : TRO_wf
TRO{i:l}() ∈ 𝕌'
Proof
Definitions occuring in Statement : 
TRO: TRO{i:l}(), 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
TRO: TRO{i:l}(), 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
infix_ap: x f y, 
so_apply: x[s1;s2]
Lemmas referenced : 
trans_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
productEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
applyEquality, 
lambdaEquality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
TRO\{i:l\}()  \mmember{}  \mBbbU{}'
 Date html generated: 
2016_05_15-PM-04_13_46
 Last ObjectModification: 
2015_12_27-PM-02_59_07
Theory : general
Home
Index