Nuprl Lemma : adjacent-sublist
∀[T:Type]. ∀L1,L2:T List.  (L1 ⊆ L2 ⇒ (∀x,y:T.  (adjacent(T;L1;x;y) ⇒ x before y ∈ L2)))
Proof
Definitions occuring in Statement : 
adjacent: adjacent(T;L;x;y), 
l_before: x before y ∈ l, 
sublist: L1 ⊆ L2, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
guard: {T}, 
prop: ℙ
Lemmas referenced : 
l_before_sublist, 
adjacent-before, 
adjacent_wf, 
sublist_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  (\mforall{}x,y:T.    (adjacent(T;L1;x;y)  {}\mRightarrow{}  x  before  y  \mmember{}  L2)))
Date html generated:
2016_05_15-PM-03_41_26
Last ObjectModification:
2015_12_27-PM-01_17_45
Theory : general
Home
Index