Nuprl Lemma : bag_qinc

A:Type. ((A List) ⊆bag(A))


Proof




Definitions occuring in Statement :  bag: bag(T) list: List subtype_rel: A ⊆B all: x:A. B[x] universe: Type
Definitions unfolded in proof :  bag: bag(T) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  subtype_quotient list_wf permutation_wf permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality independent_isectElimination universeEquality

Latex:
\mforall{}A:Type.  ((A  List)  \msubseteq{}r  bag(A))



Date html generated: 2019_10_15-AM-11_35_58
Last ObjectModification: 2018_09_18-PM-10_17_55

Theory : general


Home Index