Nuprl Lemma : bag_qinc
∀A:Type. ((A List) ⊆r bag(A))
Proof
Definitions occuring in Statement : 
bag: bag(T), 
list: T List, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
bag: bag(T), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a
Lemmas referenced : 
subtype_quotient, 
list_wf, 
permutation_wf, 
permutation-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}A:Type.  ((A  List)  \msubseteq{}r  bag(A))
Date html generated:
2019_10_15-AM-11_35_58
Last ObjectModification:
2018_09_18-PM-10_17_55
Theory : general
Home
Index