Step
*
1
of Lemma
closure-well-founded-total
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. WellFnd{i}(T;x,y.R x y)
4. ∀x,y:T. Dec(R x y)
5. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
6. one-one(T;T;R)
7. ∀y,z:T. ((∀x:T. ((¬(R x y)) ∧ (¬(R x z))))
⇒ (y = z ∈ T))
8. a : T@i
9. b : T@i
10. m : T
11. (R^*) m a
12. ∀z:T. (¬(R z m))
13. (R^*) m b
⊢ ((R^*) a b) ∨ ((R^*) b a)
BY
{ (((All (RepUR ``rel_star``)) THEN ExRepD) THEN (Decide n1 ≤ n THENA Auto)) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. WellFnd{i}(T;x,y.R x y)
4. ∀x,y:T. Dec(R x y)
5. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
6. one-one(T;T;R)
7. ∀y,z:T. ((∀x:T. ((¬(R x y)) ∧ (¬(R x z))))
⇒ (y = z ∈ T))
8. a : T@i
9. b : T@i
10. m : T
11. n1 : ℕ
12. m R^n1 a
13. ∀z:T. (¬(R z m))
14. n : ℕ
15. m R^n b
16. n1 ≤ n
⊢ (∃n:ℕ. (a R^n b)) ∨ (∃n:ℕ. (b R^n a))
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. WellFnd{i}(T;x,y.R x y)
4. ∀x,y:T. Dec(R x y)
5. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
6. one-one(T;T;R)
7. ∀y,z:T. ((∀x:T. ((¬(R x y)) ∧ (¬(R x z))))
⇒ (y = z ∈ T))
8. a : T@i
9. b : T@i
10. m : T
11. n1 : ℕ
12. m R^n1 a
13. ∀z:T. (¬(R z m))
14. n : ℕ
15. m R^n b
16. ¬(n1 ≤ n)
⊢ (∃n:ℕ. (a R^n b)) ∨ (∃n:ℕ. (b R^n a))
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. WellFnd\{i\}(T;x,y.R x y)
4. \mforall{}x,y:T. Dec(R x y)
5. \mforall{}y:T. \mexists{}L:T List. \mforall{}x:T. ((R x y) {}\mRightarrow{} (x \mmember{} L))
6. one-one(T;T;R)
7. \mforall{}y,z:T. ((\mforall{}x:T. ((\mneg{}(R x y)) \mwedge{} (\mneg{}(R x z)))) {}\mRightarrow{} (y = z))
8. a : T@i
9. b : T@i
10. m : T
11. rel\_star(T; R) m a
12. \mforall{}z:T. (\mneg{}(R z m))
13. rel\_star(T; R) m b
\mvdash{} (rel\_star(T; R) a b) \mvee{} (rel\_star(T; R) b a)
By
Latex:
(((All (RepUR ``rel\_star``)) THEN ExRepD) THEN (Decide n1 \mleq{} n THENA Auto))
Home
Index