Step
*
1
1
of Lemma
closure-well-founded-total
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. WellFnd{i}(T;x,y.R x y)
4. ∀x,y:T. Dec(R x y)
5. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
6. one-one(T;T;R)
7. ∀y,z:T. ((∀x:T. ((¬(R x y)) ∧ (¬(R x z))))
⇒ (y = z ∈ T))
8. a : T@i
9. b : T@i
10. m : T
11. n1 : ℕ
12. m R^n1 a
13. ∀z:T. (¬(R z m))
14. n : ℕ
15. m R^n b
16. n1 ≤ n
⊢ (∃n:ℕ. (a R^n b)) ∨ (∃n:ℕ. (b R^n a))
BY
{ ((OrLeft THENA Auto) THEN (InstConcl [⌜n - n1⌝])⋅ THEN Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. WellFnd{i}(T;x,y.R x y)
4. ∀x,y:T. Dec(R x y)
5. ∀y:T. ∃L:T List. ∀x:T. ((R x y)
⇒ (x ∈ L))
6. one-one(T;T;R)
7. ∀y,z:T. ((∀x:T. ((¬(R x y)) ∧ (¬(R x z))))
⇒ (y = z ∈ T))
8. a : T@i
9. b : T@i
10. m : T
11. n1 : ℕ
12. m R^n1 a
13. ∀z:T. (¬(R z m))
14. n : ℕ
15. m R^n b
16. n1 ≤ n
⊢ a R^n - n1 b
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. WellFnd\{i\}(T;x,y.R x y)
4. \mforall{}x,y:T. Dec(R x y)
5. \mforall{}y:T. \mexists{}L:T List. \mforall{}x:T. ((R x y) {}\mRightarrow{} (x \mmember{} L))
6. one-one(T;T;R)
7. \mforall{}y,z:T. ((\mforall{}x:T. ((\mneg{}(R x y)) \mwedge{} (\mneg{}(R x z)))) {}\mRightarrow{} (y = z))
8. a : T@i
9. b : T@i
10. m : T
11. n1 : \mBbbN{}
12. m rel\_exp(T; R; n1) a
13. \mforall{}z:T. (\mneg{}(R z m))
14. n : \mBbbN{}
15. m rel\_exp(T; R; n) b
16. n1 \mleq{} n
\mvdash{} (\mexists{}n:\mBbbN{}. (a rel\_exp(T; R; n) b)) \mvee{} (\mexists{}n:\mBbbN{}. (b rel\_exp(T; R; n) a))
By
Latex:
((OrLeft THENA Auto) THEN (InstConcl [\mkleeneopen{}n - n1\mkleeneclose{}])\mcdot{} THEN Auto)
Home
Index