Step
*
1
of Lemma
combinations-choose
.....truecase.....
1. ∀[n,m:ℕ].
((C(n;m) * (m - n)!) = (m)! ∈ ℤ supposing n ≤ m ∧ (C(n;m) = if n ≤z m then (m)! ÷ (m - n)! else 0 fi ∈ ℤ))
2. m : ℕ
3. ∀[m@0:ℕ]
((C(m;m@0) * (m@0 - m)!) = (m@0)! ∈ ℤ supposing m ≤ m@0
∧ (C(m;m@0) = if m ≤z m@0 then (m@0)! ÷ (m@0 - m)! else 0 fi ∈ ℤ))
4. n : ℕ
5. C(m;n) = ((n)! ÷ (n - m)!) ∈ ℤ
6. m ≤ n
7. (C(m;n) * (n - m)!) = (n)! ∈ ℤ
8. m ≤ n
⊢ C(m;n) = (choose(n;m) * (m)!) ∈ ℤ
BY
{ (Symmetry THEN (InstLemma `choose-formula` [⌜n⌝;⌜m⌝]⋅ THENA Auto) THEN Mul ⌜(n - m)!⌝ 0⋅ THEN Auto) }
Latex:
Latex:
.....truecase.....
1. \mforall{}[n,m:\mBbbN{}].
((C(n;m) * (m - n)!) = (m)! supposing n \mleq{} m
\mwedge{} (C(n;m) = if n \mleq{}z m then (m)! \mdiv{} (m - n)! else 0 fi ))
2. m : \mBbbN{}
3. \mforall{}[m@0:\mBbbN{}]
((C(m;m@0) * (m@0 - m)!) = (m@0)! supposing m \mleq{} m@0
\mwedge{} (C(m;m@0) = if m \mleq{}z m@0 then (m@0)! \mdiv{} (m@0 - m)! else 0 fi ))
4. n : \mBbbN{}
5. C(m;n) = ((n)! \mdiv{} (n - m)!)
6. m \mleq{} n
7. (C(m;n) * (n - m)!) = (n)!
8. m \mleq{} n
\mvdash{} C(m;n) = (choose(n;m) * (m)!)
By
Latex:
(Symmetry THEN (InstLemma `choose-formula` [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{} THENA Auto) THEN Mul \mkleeneopen{}(n - m)!\mkleeneclose{} 0\mcdot{} THEN Auto)
Home
Index