Step
*
1
1
2
2
of Lemma
combinations_aux_rem_property
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ]. (combinations_aux_rem(b rem k;n - 1;m;k) = (combinations_aux(b;n - 1;m) rem k) ∈ ℤ)
5. b : ℕ
6. m : ℕ
7. ¬(n = 0 ∈ ℤ)
8. m = 0 ∈ ℤ
⊢ combinations_aux_rem(0;n - 1;0 - 1;k) = (combinations_aux(0;n - 1;0 - 1) rem k) ∈ ℤ
BY
{ (Assert ∀n:ℕ. ∀x:ℤ. ((combinations_aux_rem(0;n;x;k) = 0 ∈ ℤ) ∧ (combinations_aux(0;n;x) = 0 ∈ ℤ)) BY
(InductionOnNat
THEN (RecUnfold `combinations_aux_rem` 0 THEN RecUnfold `combinations_aux` 0)
THEN Reduce 0
THEN Auto
THEN SplitOnConclITE
THEN Auto
THEN RepeatFor 3 ((CallByValueReduce 0 THEN Auto))))⋅ }
1
.....aux.....
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ]. (combinations_aux_rem(b rem k;n - 1;m;k) = (combinations_aux(b;n - 1;m) rem k) ∈ ℤ)
5. b : ℕ
6. m : ℕ
7. ¬(n = 0 ∈ ℤ)
8. m = 0 ∈ ℤ
9. n1 : ℤ
10. 0 < n1
11. ∀x:ℤ. ((combinations_aux_rem(0;n1 - 1;x;k) = 0 ∈ ℤ) ∧ (combinations_aux(0;n1 - 1;x) = 0 ∈ ℤ))
12. x : ℤ
13. ¬(n1 = 0 ∈ ℤ)
⊢ combinations_aux_rem(0 * x rem k;n1 - 1;x - 1;k) = 0 ∈ ℤ
2
1. k : ℕ+
2. n : ℤ
3. 0 < n
4. ∀[b,m:ℕ]. (combinations_aux_rem(b rem k;n - 1;m;k) = (combinations_aux(b;n - 1;m) rem k) ∈ ℤ)
5. b : ℕ
6. m : ℕ
7. ¬(n = 0 ∈ ℤ)
8. m = 0 ∈ ℤ
9. ∀n:ℕ. ∀x:ℤ. ((combinations_aux_rem(0;n;x;k) = 0 ∈ ℤ) ∧ (combinations_aux(0;n;x) = 0 ∈ ℤ))
⊢ combinations_aux_rem(0;n - 1;0 - 1;k) = (combinations_aux(0;n - 1;0 - 1) rem k) ∈ ℤ
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. n : \mBbbZ{}
3. 0 < n
4. \mforall{}[b,m:\mBbbN{}]. (combinations\_aux\_rem(b rem k;n - 1;m;k) = (combinations\_aux(b;n - 1;m) rem k))
5. b : \mBbbN{}
6. m : \mBbbN{}
7. \mneg{}(n = 0)
8. m = 0
\mvdash{} combinations\_aux\_rem(0;n - 1;0 - 1;k) = (combinations\_aux(0;n - 1;0 - 1) rem k)
By
Latex:
(Assert \mforall{}n:\mBbbN{}. \mforall{}x:\mBbbZ{}. ((combinations\_aux\_rem(0;n;x;k) = 0) \mwedge{} (combinations\_aux(0;n;x) = 0)) BY
(InductionOnNat
THEN (RecUnfold `combinations\_aux\_rem` 0 THEN RecUnfold `combinations\_aux` 0)
THEN Reduce 0
THEN Auto
THEN SplitOnConclITE
THEN Auto
THEN RepeatFor 3 ((CallByValueReduce 0 THEN Auto))))\mcdot{}
Home
Index