Nuprl Lemma : continuous'-monotone-identity
continuous'-monotone{i:l}(T.T)
Proof
Definitions occuring in Statement : 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
Definitions unfolded in proof : 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T]), 
and: P ∧ Q, 
cand: A c∧ B, 
type-monotone: Monotone(T.F[T]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
type-continuous': semi-continuous(λT.F[T]), 
so_lambda: λ2x.t[x], 
type-incr-chain: type-incr-chain{i:l}(), 
so_apply: x[s]
Lemmas referenced : 
subtype_rel_wf, 
subtype_rel_self, 
tunion_wf, 
nat_wf, 
type-incr-chain_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
isect_memberFormation, 
introduction, 
hypothesis, 
sqequalRule, 
axiomEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_pairFormation, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename
Latex:
continuous'-monotone\{i:l\}(T.T)
 Date html generated: 
2016_05_15-PM-06_53_53
 Last ObjectModification: 
2015_12_27-AM-11_41_37
Theory : general
Home
Index