Step
*
2
of Lemma
decidable__llex
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀a,b:A. (Dec(<[a;b]) ∧ Dec(a = b ∈ A))@i
4. L1 : A List@i
5. L2 : A List@i
⊢ Dec(∃i:ℕ. (i < ||L1|| ∧ i < ||L2|| ∧ (∀j:ℕi. (L1[j] = L2[j] ∈ A)) ∧ <[L1[i];L2[i]]))
BY
{ Assert ⌜Dec(∃i:ℕ||L1||. (i < ||L2|| ∧ (∀j:ℕi. (L1[j] = L2[j] ∈ A)) ∧ <[L1[i];L2[i]]))⌝⋅ }
1
.....assertion.....
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀a,b:A. (Dec(<[a;b]) ∧ Dec(a = b ∈ A))@i
4. L1 : A List@i
5. L2 : A List@i
⊢ Dec(∃i:ℕ||L1||. (i < ||L2|| ∧ (∀j:ℕi. (L1[j] = L2[j] ∈ A)) ∧ <[L1[i];L2[i]]))
2
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. ∀a,b:A. (Dec(<[a;b]) ∧ Dec(a = b ∈ A))@i
4. L1 : A List@i
5. L2 : A List@i
6. Dec(∃i:ℕ||L1||. (i < ||L2|| ∧ (∀j:ℕi. (L1[j] = L2[j] ∈ A)) ∧ <[L1[i];L2[i]]))
⊢ Dec(∃i:ℕ. (i < ||L1|| ∧ i < ||L2|| ∧ (∀j:ℕi. (L1[j] = L2[j] ∈ A)) ∧ <[L1[i];L2[i]]))
Latex:
Latex:
1. [A] : Type
2. [<] : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. \mforall{}a,b:A. (Dec(<[a;b]) \mwedge{} Dec(a = b))@i
4. L1 : A List@i
5. L2 : A List@i
\mvdash{} Dec(\mexists{}i:\mBbbN{}. (i < ||L1|| \mwedge{} i < ||L2|| \mwedge{} (\mforall{}j:\mBbbN{}i. (L1[j] = L2[j])) \mwedge{} <[L1[i];L2[i]]))
By
Latex:
Assert \mkleeneopen{}Dec(\mexists{}i:\mBbbN{}||L1||. (i < ||L2|| \mwedge{} (\mforall{}j:\mBbbN{}i. (L1[j] = L2[j])) \mwedge{} <[L1[i];L2[i]]))\mkleeneclose{}\mcdot{}
Home
Index