Nuprl Lemma : decidable__llex

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a,b:A.  (Dec(<[a;b]) ∧ Dec(a b ∈ A)))  (∀L1,L2:A List.  Dec(L1 llex(A;a,b.<[a;b]) L2)))


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] llex: llex(A;a,b.<[a; b]) infix_ap: y member: t ∈ T prop: and: P ∧ Q so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T so_apply: x[s] nat: ge: i ≥  so_apply: x[s1;s2] subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) cand: c∧ B
Lemmas referenced :  lelt_wf false_wf int_seg_subtype_nat not_wf decidable__exists_int_seg decidable__all_int_seg decidable__and decidable_wf and_wf list_wf nat_properties nat_wf exists_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf equal_wf int_seg_wf all_wf length_wf less_than_wf decidable__or
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality cumulativity hypothesisEquality hypothesis because_Cache natural_numberEquality lambdaEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination introduction applyEquality universeEquality independent_functionElimination functionEquality instantiate inrFormation inlFormation dependent_set_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:A.    (Dec(<[a;b])  \mwedge{}  Dec(a  =  b)))  {}\mRightarrow{}  (\mforall{}L1,L2:A  List.    Dec(L1  llex(A;a,b.<[a;b])  L2)))



Date html generated: 2016_05_15-PM-04_17_37
Last ObjectModification: 2016_01_16-AM-11_14_18

Theory : general


Home Index