Step
*
of Lemma
descending-append
No Annotations
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
∀L1,L2:A List.
(descending(a,b.<[a;b];L1 @ L2)
⇐⇒ descending(a,b.<[a;b];L1)
∧ descending(a,b.<[a;b];L2)
∧ (<[hd(L2);last(L1)]) supposing (0 < ||L2|| and 0 < ||L1||))
BY
{ ((UnivCD THENA Auto) THEN RepeatFor 2 ((D 0 THENA Auto))) }
1
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. L1 : A List
4. L2 : A List
5. descending(a,b.<[a;b];L1 @ L2)
⊢ descending(a,b.<[a;b];L1) ∧ descending(a,b.<[a;b];L2) ∧ (<[hd(L2);last(L1)]) supposing (0 < ||L2|| and 0 < ||L1||)
2
1. [A] : Type
2. [<] : A ⟶ A ⟶ ℙ
3. L1 : A List
4. L2 : A List
5. descending(a,b.<[a;b];L1) ∧ descending(a,b.<[a;b];L2) ∧ (<[hd(L2);last(L1)]) supposing (0 < ||L2|| and 0 < ||L1||)
⊢ descending(a,b.<[a;b];L1 @ L2)
Latex:
Latex:
No Annotations
\mforall{}[A:Type]. \mforall{}[<:A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}].
\mforall{}L1,L2:A List.
(descending(a,b.<[a;b];L1 @ L2)
\mLeftarrow{}{}\mRightarrow{} descending(a,b.<[a;b];L1)
\mwedge{} descending(a,b.<[a;b];L2)
\mwedge{} (<[hd(L2);last(L1)]) supposing (0 < ||L2|| and 0 < ||L1||))
By
Latex:
((UnivCD THENA Auto) THEN RepeatFor 2 ((D 0 THENA Auto)))
Home
Index