Step
*
2
2
2
of Lemma
divisor-in-range
1. n : {2...}
2. [n@0] : ℕ
3. ∀[m:ℕn@0]
∀i:{1...}. ∀j:{i..i + m-}.
(∃m:ℤ [(m < n ∧ (2 ≤ m) ∧ (m | n))]) ∨ (¬(∃m:ℤ [((2 ≤ m) ∧ (i ≤ m) ∧ (m ≤ j) ∧ (m | n))])) supposing j < n
4. i : {1...}
5. j : {i..i + n@0-}
6. j < n
7. p : ℤ
8. p = iseg_product_rem(i;j;n) ∈ ℤ
9. 1 = gcd(n;iseg_product(i;j)) ∈ ℤ
⊢ (∃m:ℤ [(m < n ∧ (2 ≤ m) ∧ (m | n))]) ∨ (¬(∃m:ℤ [((2 ≤ m) ∧ (i ≤ m) ∧ (m ≤ j) ∧ (m | n))]))
BY
{ (OrRight THEN Auto THEN D 0 THEN Auto THEN D -1 THEN Auto)⋅ }
1
1. n : {2...}
2. n@0 : ℕ
3. ∀[m:ℕn@0]
∀i:{1...}. ∀j:{i..i + m-}.
(∃m:ℤ [(m < n ∧ (2 ≤ m) ∧ (m | n))]) ∨ (¬(∃m:ℤ [((2 ≤ m) ∧ (i ≤ m) ∧ (m ≤ j) ∧ (m | n))])) supposing j < n
4. i : {1...}
5. j : {i..i + n@0-}
6. j < n
7. p : ℤ
8. p = iseg_product_rem(i;j;n) ∈ ℤ
9. 1 = gcd(n;iseg_product(i;j)) ∈ ℤ
10. m : ℤ
11. 2 ≤ m
12. i ≤ m
13. m ≤ j
14. m | n
⊢ False
Latex:
Latex:
1. n : \{2...\}
2. [n@0] : \mBbbN{}
3. \mforall{}[m:\mBbbN{}n@0]
\mforall{}i:\{1...\}. \mforall{}j:\{i..i + m\msupminus{}\}.
(\mexists{}m:\mBbbZ{} [(m < n \mwedge{} (2 \mleq{} m) \mwedge{} (m | n))]) \mvee{} (\mneg{}(\mexists{}m:\mBbbZ{} [((2 \mleq{} m) \mwedge{} (i \mleq{} m) \mwedge{} (m \mleq{} j) \mwedge{} (m | n))]))
supposing j < n
4. i : \{1...\}
5. j : \{i..i + n@0\msupminus{}\}
6. j < n
7. p : \mBbbZ{}
8. p = iseg\_product\_rem(i;j;n)
9. 1 = gcd(n;iseg\_product(i;j))
\mvdash{} (\mexists{}m:\mBbbZ{} [(m < n \mwedge{} (2 \mleq{} m) \mwedge{} (m | n))]) \mvee{} (\mneg{}(\mexists{}m:\mBbbZ{} [((2 \mleq{} m) \mwedge{} (i \mleq{} m) \mwedge{} (m \mleq{} j) \mwedge{} (m | n))]))
By
Latex:
(OrRight THEN Auto THEN D 0 THEN Auto THEN D -1 THEN Auto)\mcdot{}
Home
Index