Nuprl Lemma : do-apply_wf
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)]. ∀[x:A].  do-apply(f;x) ∈ B supposing ↑can-apply(f;x)
Proof
Definitions occuring in Statement : 
do-apply: do-apply(f;x), 
can-apply: can-apply(f;x), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
do-apply: do-apply(f;x), 
can-apply: can-apply(f;x), 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
top: Top
Lemmas referenced : 
outl_wf, 
top_wf, 
assert_wf, 
isl_wf, 
can-apply_wf, 
subtype_rel_dep_function, 
subtype_rel_union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
axiomEquality, 
lambdaEquality, 
unionEquality, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[x:A].    do-apply(f;x)  \mmember{}  B  supposing  \muparrow{}can-apply(f;x)
Date html generated:
2016_05_15-PM-03_28_45
Last ObjectModification:
2015_12_27-PM-01_09_35
Theory : general
Home
Index