Step
*
2
1
of Lemma
equipollent-nat-subset
.....assertion.....
1. [T] : Type
2. P : T ⟶ ℙ@i'
3. ∀x:T. Dec(P[x])@i
4. ∀L:T List. ∃x:T. (P[x] ∧ (¬(x ∈ L)))@i
5. f : ℕ ⟶ T@i
6. Bij(ℕ;T;f)@i
7. ℕ ~ {n:ℕ| P[f n]}
⊢ {n:ℕ| P[f n]} ~ {x:T| P[x]}
BY
{ (With ⌜f⌝ (D 0)⋅ THEN Auto) }
1
.....wf.....
1. T : Type
2. P : T ⟶ ℙ@i'
3. ∀x:T. Dec(P[x])@i
4. ∀L:T List. ∃x:T. (P[x] ∧ (¬(x ∈ L)))@i
5. f : ℕ ⟶ T@i
6. Bij(ℕ;T;f)@i
7. ℕ ~ {n:ℕ| P[f n]}
⊢ f ∈ {n:ℕ| P[f n]} ⟶ {x:T| P[x]}
2
1. [T] : Type
2. P : T ⟶ ℙ@i'
3. ∀x:T. Dec(P[x])@i
4. ∀L:T List. ∃x:T. (P[x] ∧ (¬(x ∈ L)))@i
5. f : ℕ ⟶ T@i
6. Bij(ℕ;T;f)@i
7. ℕ ~ {n:ℕ| P[f n]}
⊢ Bij({n:ℕ| P[f n]} ;{x:T| P[x]} ;f)
Latex:
Latex:
.....assertion.....
1. [T] : Type
2. P : T {}\mrightarrow{} \mBbbP{}@i'
3. \mforall{}x:T. Dec(P[x])@i
4. \mforall{}L:T List. \mexists{}x:T. (P[x] \mwedge{} (\mneg{}(x \mmember{} L)))@i
5. f : \mBbbN{} {}\mrightarrow{} T@i
6. Bij(\mBbbN{};T;f)@i
7. \mBbbN{} \msim{} \{n:\mBbbN{}| P[f n]\}
\mvdash{} \{n:\mBbbN{}| P[f n]\} \msim{} \{x:T| P[x]\}
By
Latex:
(With \mkleeneopen{}f\mkleeneclose{} (D 0)\mcdot{} THEN Auto)
Home
Index