Nuprl Lemma : fast-mapfilter_wf
∀[A,B:Type]. ∀[L:A List]. ∀[p:{x:A| (x ∈ L)}  ⟶ 𝔹]. ∀[f:{x:A| (x ∈ L) ∧ (↑p[x])}  ⟶ B].
  (fast-mapfilter(p;f;L) ∈ B List)
Proof
Definitions occuring in Statement : 
fast-mapfilter: fast-mapfilter(p;f;L), 
l_member: (x ∈ l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fast-mapfilter: fast-mapfilter(p;f;L), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff
Lemmas referenced : 
reduce_wf, 
l_member_wf, 
list_wf, 
bool_wf, 
eqtt_to_assert, 
cons_wf, 
assert_wf, 
equal_wf, 
nil_wf, 
list-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
because_Cache, 
productEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[p:\{x:A|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  (x  \mmember{}  L)  \mwedge{}  (\muparrow{}p[x])\}    {}\mrightarrow{}  B].
    (fast-mapfilter(p;f;L)  \mmember{}  B  List)
Date html generated:
2018_05_21-PM-06_52_11
Last ObjectModification:
2017_07_26-PM-04_58_17
Theory : general
Home
Index