Step
*
1
of Lemma
finite-partition-property
1. k : ℕ
2. f : ℕ ⟶ ℕk
3. ∀i:ℕk. (¬(∀n:ℕ. (¬¬(∃m:ℕ. (n < m ∧ ((f m) = i ∈ ℤ))))))
⊢ False
BY
{ (Assert ∀i:ℕk. (¬¬(∃n:ℕ. (¬(∃m:ℕ. (n < m ∧ ((f m) = i ∈ ℤ)))))) BY
(RWO "not_over_exists" 0 THEN Auto)) }
1
1. k : ℕ
2. f : ℕ ⟶ ℕk
3. ∀i:ℕk. (¬(∀n:ℕ. (¬¬(∃m:ℕ. (n < m ∧ ((f m) = i ∈ ℤ))))))
4. ∀i:ℕk. (¬¬(∃n:ℕ. (¬(∃m:ℕ. (n < m ∧ ((f m) = i ∈ ℤ))))))
⊢ False
Latex:
Latex:
1. k : \mBbbN{}
2. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}k
3. \mforall{}i:\mBbbN{}k. (\mneg{}(\mforall{}n:\mBbbN{}. (\mneg{}\mneg{}(\mexists{}m:\mBbbN{}. (n < m \mwedge{} ((f m) = i))))))
\mvdash{} False
By
Latex:
(Assert \mforall{}i:\mBbbN{}k. (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}. (\mneg{}(\mexists{}m:\mBbbN{}. (n < m \mwedge{} ((f m) = i)))))) BY
(RWO "not\_over\_exists" 0 THEN Auto))
Home
Index