Step
*
2
1
of Lemma
fun-path-before
1. [T] : Type
2. f : T ⟶ T
3. u : T
4. v : T List
5. ∀x,y,a,b:T. a before b ∈ v
⇒ a is f*(b) supposing x=f*(y) via v
6. x : T
7. y : T
8. a : T
9. b : T
10. {(x = u ∈ T)
∧ ((u = (f hd(v)) ∈ T) ∧ (¬(u = hd(v) ∈ T))) ∧ hd(v)=f*(y) via v supposing 0 < ||v||
∧ y = u ∈ T supposing ¬0 < ||v||}
11. ((a = u ∈ T) ∧ (b ∈ v)) ∨ a before b ∈ v
⊢ a is f*(b)
BY
{ (D (-1) THEN Auto) }
1
1. [T] : Type
2. f : T ⟶ T
3. u : T
4. v : T List
5. ∀x,y,a,b:T. a before b ∈ v
⇒ a is f*(b) supposing x=f*(y) via v
6. x : T
7. y : T
8. a : T
9. b : T
10. {(x = u ∈ T)
∧ ((u = (f hd(v)) ∈ T) ∧ (¬(u = hd(v) ∈ T))) ∧ hd(v)=f*(y) via v supposing 0 < ||v||
∧ y = u ∈ T supposing ¬0 < ||v||}
11. a = u ∈ T
12. (b ∈ v)
⊢ a is f*(b)
2
1. [T] : Type
2. f : T ⟶ T
3. u : T
4. v : T List
5. ∀x,y,a,b:T. a before b ∈ v
⇒ a is f*(b) supposing x=f*(y) via v
6. x : T
7. y : T
8. a : T
9. b : T
10. {(x = u ∈ T)
∧ ((u = (f hd(v)) ∈ T) ∧ (¬(u = hd(v) ∈ T))) ∧ hd(v)=f*(y) via v supposing 0 < ||v||
∧ y = u ∈ T supposing ¬0 < ||v||}
11. a before b ∈ v
⊢ a is f*(b)
Latex:
Latex:
1. [T] : Type
2. f : T {}\mrightarrow{} T
3. u : T
4. v : T List
5. \mforall{}x,y,a,b:T. a before b \mmember{} v {}\mRightarrow{} a is f*(b) supposing x=f*(y) via v
6. x : T
7. y : T
8. a : T
9. b : T
10. \{(x = u)
\mwedge{} ((u = (f hd(v))) \mwedge{} (\mneg{}(u = hd(v)))) \mwedge{} hd(v)=f*(y) via v supposing 0 < ||v||
\mwedge{} y = u supposing \mneg{}0 < ||v||\}
11. ((a = u) \mwedge{} (b \mmember{} v)) \mvee{} a before b \mmember{} v
\mvdash{} a is f*(b)
By
Latex:
(D (-1) THEN Auto)
Home
Index