Step
*
of Lemma
general_length_nth_tl
∀[r:ℕ]. ∀[L:Top List]. (||nth_tl(r;L)|| = if r <z ||L|| then ||L|| - r else 0 fi ∈ ℤ)
BY
{ xxx(InductionOnNat THEN RecUnfold `nth_tl` 0 THEN Reduce 0)xxx }
1
1. r : ℤ
⊢ ∀[L:Top List]. (||L|| = if 0 <z ||L|| then ||L|| - 0 else 0 fi ∈ ℤ)
2
1. r : ℤ
2. 0 < r
3. ∀[L:Top List]. (||nth_tl(r - 1;L)|| = if r - 1 <z ||L|| then ||L|| - r - 1 else 0 fi ∈ ℤ)
⊢ ∀[L:Top List]. (||if r ≤z 0 then L else nth_tl(r - 1;tl(L)) fi || = if r <z ||L|| then ||L|| - r else 0 fi ∈ ℤ)
Latex:
Latex:
\mforall{}[r:\mBbbN{}]. \mforall{}[L:Top List]. (||nth\_tl(r;L)|| = if r <z ||L|| then ||L|| - r else 0 fi )
By
Latex:
xxx(InductionOnNat THEN RecUnfold `nth\_tl` 0 THEN Reduce 0)xxx
Home
Index