Step
*
1
1
1
2
of Lemma
generic-non-empty
1. [T] : Type
2. X : T
3. R : ℕ ⟶ (T List) ⟶ ℙ
4. p : i:ℕ ⟶ s:(T List) ⟶ (∃s':T List. (s ≤ s' ∧ (R i s')))
5. ∃s:ℕ ⟶ (T List). ((∀i:ℕ. (R i (s i))) ∧ (∀i:ℕ. s i ≤ s (i + 1)) ∧ (∀i:ℕ. i < ||s i||))
⊢ ∃f:ℕ ⟶ T. ∀i:ℕ. ∃s:T List. ((R i s) ∧ (∀n:ℕ||s||. (s[n] = (f n) ∈ T)))
BY
{ (ExRepD THEN (InstConcl [⌜λn.s n[n]⌝])⋅ THEN Auto) }
1
1. [T] : Type
2. X : T
3. R : ℕ ⟶ (T List) ⟶ ℙ
4. p : i:ℕ ⟶ s:(T List) ⟶ (∃s':T List. (s ≤ s' ∧ (R i s')))
5. s : ℕ ⟶ (T List)
6. ∀i:ℕ. (R i (s i))
7. ∀i:ℕ. s i ≤ s (i + 1)
8. ∀i:ℕ. i < ||s i||
9. i : ℕ
⊢ ∃s@0:T List. ((R i s@0) ∧ (∀n:ℕ||s@0||. (s@0[n] = ((λn.s n[n]) n) ∈ T)))
Latex:
Latex:
1. [T] : Type
2. X : T
3. R : \mBbbN{} {}\mrightarrow{} (T List) {}\mrightarrow{} \mBbbP{}
4. p : i:\mBbbN{} {}\mrightarrow{} s:(T List) {}\mrightarrow{} (\mexists{}s':T List. (s \mleq{} s' \mwedge{} (R i s')))
5. \mexists{}s:\mBbbN{} {}\mrightarrow{} (T List). ((\mforall{}i:\mBbbN{}. (R i (s i))) \mwedge{} (\mforall{}i:\mBbbN{}. s i \mleq{} s (i + 1)) \mwedge{} (\mforall{}i:\mBbbN{}. i < ||s i||))
\mvdash{} \mexists{}f:\mBbbN{} {}\mrightarrow{} T. \mforall{}i:\mBbbN{}. \mexists{}s:T List. ((R i s) \mwedge{} (\mforall{}n:\mBbbN{}||s||. (s[n] = (f n))))
By
Latex:
(ExRepD THEN (InstConcl [\mkleeneopen{}\mlambda{}n.s n[n]\mkleeneclose{}])\mcdot{} THEN Auto)
Home
Index