Nuprl Lemma : inv-rel-inject

[A,B:Type]. ∀[f:A ⟶ B]. ∀[finv:B ⟶ (A?)].  Inj(A;B;f) supposing inv-rel(A;B;f;finv)


Proof




Definitions occuring in Statement :  inv-rel: inv-rel(A;B;f;finv) inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] unit: Unit function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  inject: Inj(A;B;f) inv-rel: inv-rel(A;B;f;finv) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True
Lemmas referenced :  equal_wf all_wf unit_wf2 and_wf outl_wf assert_wf isl_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin hypothesis extract_by_obid isectElimination hypothesisEquality applyEquality lambdaEquality dependent_functionElimination axiomEquality because_Cache productEquality functionEquality unionEquality inlEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality hyp_replacement applyLambdaEquality dependent_set_memberEquality independent_pairFormation setElimination rename independent_isectElimination promote_hyp natural_numberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[finv:B  {}\mrightarrow{}  (A?)].    Inj(A;B;f)  supposing  inv-rel(A;B;f;finv)



Date html generated: 2018_05_21-PM-06_50_17
Last ObjectModification: 2018_05_19-PM-04_41_18

Theory : general


Home Index