Nuprl Lemma : inv-rel-inject
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[finv:B ⟶ (A?)].  Inj(A;B;f) supposing inv-rel(A;B;f;finv)
Proof
Definitions occuring in Statement : 
inv-rel: inv-rel(A;B;f;finv)
, 
inject: Inj(A;B;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
inject: Inj(A;B;f)
, 
inv-rel: inv-rel(A;B;f;finv)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
outl: outl(x)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
Lemmas referenced : 
equal_wf, 
all_wf, 
unit_wf2, 
and_wf, 
outl_wf, 
assert_wf, 
isl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
productEquality, 
functionEquality, 
unionEquality, 
inlEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
independent_isectElimination, 
promote_hyp, 
natural_numberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[finv:B  {}\mrightarrow{}  (A?)].    Inj(A;B;f)  supposing  inv-rel(A;B;f;finv)
Date html generated:
2018_05_21-PM-06_50_17
Last ObjectModification:
2018_05_19-PM-04_41_18
Theory : general
Home
Index