Nuprl Lemma : l-ordered-filter
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀P:T ⟶ 𝔹. ∀L:T List.  (l-ordered(T;x,y.R[x;y];L) ⇒ l-ordered(T;x,y.R[x;y];filter(P;L)))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
filter: filter(P;l), 
list: T List, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
top: Top, 
true: True, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
cand: A c∧ B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
list_induction, 
l-ordered_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
set_wf, 
list_wf, 
filter_nil_lemma, 
true_wf, 
l-ordered-nil-true, 
nil_wf, 
filter_cons_lemma, 
eqtt_to_assert, 
l-ordered-cons, 
subtype_rel_self, 
member_filter_2, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
all_wf, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
because_Cache, 
hypothesis, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
addLevel, 
impliesFunctionality, 
productElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
productEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.    (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];filter(P;L)))
Date html generated:
2018_05_21-PM-07_38_18
Last ObjectModification:
2017_07_26-PM-05_12_34
Theory : general
Home
Index