Step
*
2
of Lemma
longest-prefix_property'
1. [T] : Type
⊢ ∀P:T List+ ⟶ 𝔹
(longest-prefix(P;[]) ≤ []
∧ longest-prefix(P;[]) < [] supposing 0 < ||[]||
∧ (((longest-prefix(P;[]) = [] ∈ (T List)) ∧ (∀L':T List. ([] < L'
⇒ L' < []
⇒ (¬↑(P L')))))
∨ (0 < ||longest-prefix(P;[])||
∧ (↑(P longest-prefix(P;[])))
∧ (∀L':T List. (longest-prefix(P;[]) < L'
⇒ L' < []
⇒ (¬↑(P L')))))))
BY
{ xxx(RecUnfold `longest-prefix` 0
THEN Reduce 0
THEN Auto
THEN OrLeft
THEN Auto
THEN (InstLemma `proper-iseg-length` [⌜T⌝;⌜L'⌝;⌜[]⌝]⋅ THEN Auto')
THEN ThinTrivial
THEN Auto')xxx }
Latex:
Latex:
1. [T] : Type
\mvdash{} \mforall{}P:T List\msupplus{} {}\mrightarrow{} \mBbbB{}
(longest-prefix(P;[]) \mleq{} []
\mwedge{} longest-prefix(P;[]) < [] supposing 0 < ||[]||
\mwedge{} (((longest-prefix(P;[]) = []) \mwedge{} (\mforall{}L':T List. ([] < L' {}\mRightarrow{} L' < [] {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))
\mvee{} (0 < ||longest-prefix(P;[])||
\mwedge{} (\muparrow{}(P longest-prefix(P;[])))
\mwedge{} (\mforall{}L':T List. (longest-prefix(P;[]) < L' {}\mRightarrow{} L' < [] {}\mRightarrow{} (\mneg{}\muparrow{}(P L')))))))
By
Latex:
xxx(RecUnfold `longest-prefix` 0
THEN Reduce 0
THEN Auto
THEN OrLeft
THEN Auto
THEN (InstLemma `proper-iseg-length` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}L'\mkleeneclose{};\mkleeneopen{}[]\mkleeneclose{}]\mcdot{} THEN Auto')
THEN ThinTrivial
THEN Auto')xxx
Home
Index