Nuprl Lemma : longest-prefix_property'

[T:Type]
  ∀L:T List. ∀P:T List+ ⟶ 𝔹.
    (longest-prefix(P;L) ≤ L
    ∧ longest-prefix(P;L) < supposing 0 < ||L||
    ∧ (((longest-prefix(P;L) [] ∈ (T List)) ∧ (∀L':T List. ([] < L'  L' <  (¬↑(P L')))))
      ∨ (0 < ||longest-prefix(P;L)||
        ∧ (↑(P longest-prefix(P;L)))
        ∧ (∀L':T List. (longest-prefix(P;L) < L'  L' <  (¬↑(P L')))))))


Proof




Definitions occuring in Statement :  longest-prefix: longest-prefix(P;L) proper-iseg: L1 < L2 iseg: l1 ≤ l2 listp: List+ length: ||as|| nil: [] list: List assert: b bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: and: P ∧ Q uimplies: supposing a listp: List+ iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top longest-prefix: longest-prefix(P;L) ifthenelse: if then else fi  btrue: tt cand: c∧ B less_than': less_than'(a;b) proper-iseg: L1 < L2 iseg: l1 ≤ l2 ge: i ≥  le: A ≤ B bfalse: ff let: let cons: [a b] subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] true: True lt_int: i <j
Lemmas referenced :  list_induction list_wf all_wf listp_wf bool_wf iseg_wf longest-prefix_wf less_than_wf length_wf proper-iseg_wf or_wf equal-wf-T-base not_wf assert_wf proper-iseg-length length_of_nil_lemma nil_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf null_nil_lemma reduce_tl_nil_lemma iseg_weakening member-less_than non_neg_length intformle_wf int_formula_prop_le_lemma null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma length_of_cons_lemma cons_wf_listp list-cases product_subtype_list equal_wf nil_iseg cons_wf equal-wf-base btrue_wf bfalse_wf and_wf null_wf3 subtype_rel_list top_wf btrue_neq_bfalse equal-wf-base-T itermAdd_wf int_term_value_add_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot list_ind_cons_lemma list_ind_nil_lemma iff_imp_equal_bool true_wf tl_wf int_subtype_base assert_of_lt_int subtype_rel-equal cons-proper-iseg cons_iseg iseg_nil add-is-int-iff false_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule independent_functionElimination rename because_Cache hypothesis dependent_functionElimination cumulativity universeEquality lambdaEquality functionEquality productEquality functionExtensionality applyEquality isectEquality natural_numberEquality baseClosed equalityTransitivity equalitySymmetry dependent_set_memberEquality productElimination unionElimination imageElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll inlFormation setElimination comment promote_hyp hypothesis_subsumption addEquality applyLambdaEquality equalityElimination instantiate inrFormation imageMemberEquality hyp_replacement pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:T  List\msupplus{}  {}\mrightarrow{}  \mBbbB{}.
        (longest-prefix(P;L)  \mleq{}  L
        \mwedge{}  longest-prefix(P;L)  <  L  supposing  0  <  ||L||
        \mwedge{}  (((longest-prefix(P;L)  =  [])  \mwedge{}  (\mforall{}L':T  List.  ([]  <  L'  {}\mRightarrow{}  L'  <  L  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  L')))))
            \mvee{}  (0  <  ||longest-prefix(P;L)||
                \mwedge{}  (\muparrow{}(P  longest-prefix(P;L)))
                \mwedge{}  (\mforall{}L':T  List.  (longest-prefix(P;L)  <  L'  {}\mRightarrow{}  L'  <  L  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  L')))))))



Date html generated: 2018_05_21-PM-06_41_58
Last ObjectModification: 2017_07_26-PM-04_53_55

Theory : general


Home Index