Nuprl Lemma : proper-iseg-length

[T:Type]. ∀L1,L2:T List.  (L1 < L2 ⇐⇒ L1 ≤ L2 ∧ ||L1|| < ||L2||)


Proof




Definitions occuring in Statement :  proper-iseg: L1 < L2 iseg: l1 ≤ l2 length: ||as|| list: List less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  proper-iseg: L1 < L2 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q not: ¬A false: False iseg: l1 ≤ l2 exists: x:A. B[x] or: P ∨ Q cons: [a b] top: Top ge: i ≥  decidable: Dec(P) le: A ≤ B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T true: True
Lemmas referenced :  iseg_wf not_wf equal_wf list_wf less_than_wf length_wf list-cases product_subtype_list append_back_nil length_wf_nat nat_wf length-append length_of_cons_lemma non_neg_length decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin hypothesis cut productEquality introduction extract_by_obid isectElimination cumulativity hypothesisEquality independent_functionElimination voidElimination universeEquality dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption equalitySymmetry dependent_set_memberEquality isect_memberEquality voidEquality addEquality natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll hyp_replacement Error :applyLambdaEquality,  setElimination rename applyEquality imageElimination because_Cache imageMemberEquality baseClosed equalityTransitivity

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  <  L2  \mLeftarrow{}{}\mRightarrow{}  L1  \mleq{}  L2  \mwedge{}  ||L1||  <  ||L2||)



Date html generated: 2016_10_21-AM-10_32_28
Last ObjectModification: 2016_07_12-AM-05_45_44

Theory : list_1


Home Index