Nuprl Lemma : proper-iseg-length
∀[T:Type]. ∀L1,L2:T List.  (L1 < L2 
⇐⇒ L1 ≤ L2 ∧ ||L1|| < ||L2||)
Proof
Definitions occuring in Statement : 
proper-iseg: L1 < L2
, 
iseg: l1 ≤ l2
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
proper-iseg: L1 < L2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
iseg: l1 ≤ l2
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
iseg_wf, 
not_wf, 
equal_wf, 
list_wf, 
less_than_wf, 
length_wf, 
list-cases, 
product_subtype_list, 
append_back_nil, 
length_wf_nat, 
nat_wf, 
length-append, 
length_of_cons_lemma, 
non_neg_length, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
cut, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
independent_functionElimination, 
voidElimination, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalitySymmetry, 
dependent_set_memberEquality, 
isect_memberEquality, 
voidEquality, 
addEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
hyp_replacement, 
Error :applyLambdaEquality, 
setElimination, 
rename, 
applyEquality, 
imageElimination, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  <  L2  \mLeftarrow{}{}\mRightarrow{}  L1  \mleq{}  L2  \mwedge{}  ||L1||  <  ||L2||)
Date html generated:
2016_10_21-AM-10_32_28
Last ObjectModification:
2016_07_12-AM-05_45_44
Theory : list_1
Home
Index