Nuprl Lemma : cons_wf_listp
∀[A:Type]. ∀[l:A List]. ∀[x:A].  ([x / l] ∈ A List+)
Proof
Definitions occuring in Statement : 
listp: A List+
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
listp: A List+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
le: A ≤ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
length_of_cons_lemma, 
non_neg_length, 
decidable__lt, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
cons_wf, 
less_than_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
addEquality, 
unionElimination, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].  \mforall{}[x:A].    ([x  /  l]  \mmember{}  A  List\msupplus{})
Date html generated:
2018_05_21-PM-06_20_22
Last ObjectModification:
2018_05_19-PM-05_32_32
Theory : list!
Home
Index