Nuprl Lemma : cons_wf_listp

[A:Type]. ∀[l:A List]. ∀[x:A].  ([x l] ∈ List+)


Proof




Definitions occuring in Statement :  listp: List+ cons: [a b] list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  listp: List+ uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop:
Lemmas referenced :  length_of_cons_lemma non_neg_length decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf cons_wf less_than_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality natural_numberEquality addEquality unionElimination productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].  \mforall{}[x:A].    ([x  /  l]  \mmember{}  A  List\msupplus{})



Date html generated: 2018_05_21-PM-06_20_22
Last ObjectModification: 2018_05_19-PM-05_32_32

Theory : list!


Home Index